kok202
CNN Calculater

2019. 1. 24. 22:09[정리] 직무별 개념 정리/딥러닝

def getConv1DOutputSize(inputSize, kernelSize, stride, padding):

    output = int((inputSize + 2 * padding - kernelSize) / stride + 1)

    return output


def getConv2DOutputSize(inputSize, kernelSize, stride, padding):

    output = [getConv1DOutputSize(inputSize[0], kernelSize, stride, padding),

              getConv1DOutputSize(inputSize[1], kernelSize, stride, padding)]

    return output


def getConvT1DOutputSize(inputSize, kernelSize, stride, padding):

    output = int((inputSize - 1) * stride + kernelSize - 2 * padding)

    return output


def getConvT2DOutputSize(inputSize, kernelSize, stride, padding):

    output = [getConvT1DOutputSize(inputSize[0], kernelSize, stride, padding),

              getConvT1DOutputSize(inputSize[1], kernelSize, stride, padding)]

    return output


print("Conv")

input = [64, 64]

print(input)

input = getConv2DOutputSize(input, 4, 2, 1)

print(input)

input = getConv2DOutputSize(input, 4, 2, 1)

print(input)

input = getConv2DOutputSize(input, 4, 2, 1)

print(input)

input = getConv2DOutputSize(input, 4, 2, 1)

print(input)


print("Conv Transpose")

input = [1, 1]

input = getConvT2DOutputSize(input, 4, 2, 0)

print(input)

input = getConvT2DOutputSize(input, 4, 2, 1)

print(input)

input = getConvT2DOutputSize(input, 4, 2, 1)

print(input)

input = getConvT2DOutputSize(input, 4, 2, 1)

print(input)

input = getConvT2DOutputSize(input, 4, 2, 1)

print(input)

'[정리] 직무별 개념 정리 > 딥러닝' 카테고리의 다른 글

KLDivergence  (0) 2019.01.24
pyTorch - Mnist VAE  (0) 2019.01.24
Tensorflow - Mnist CNN 분류  (0) 2019.01.24